
measures such as speed limits have a more significant effect on
train–vehicle collision severity than on frequency.

Although most published work on hot spot identification focuses
mainly on developing accident frequency and consequence models
separately, few screening studies have proposed frameworks that
integrate both elements in a two-dimensional risk approach includ-
ing uncertainty in the analysis [examples are Nassar et al. (9) and
Saccomanno et al. (10)]. This approach assumes that accident occur-
rence at a location is best represented by the product of accident fre-
quency and severity. One way to incorporate accident severity in the
analysis is to calibrate statistical models that relate accident conse-
quences to factors such as location configuration, roadway align-
ment, speed limits, and surface conditions (9–11). In this stage, the
aim is to identify factors that largely influence the likelihood of fatal
or injury outcomes once an accident takes place. For the severity
analysis, several statistical model settings have been suggested in the
literature, such as the basic logistic regression, multinomial, ordered
logit, and mixed logit models [examples are work by Milton et al.
(11) and Eluru et al. (12)]. Alternatively, some studies incorporate
accident consequences by simply classifying accident counts by
severity type (e.g., fatal and injury and other accident types) [exam-
ples are work by Miaou and Song (6) and Park and Lord (13)]. In this
case, a statistical multivariate model setting considering the different
categories is implemented (multivariate analysis). Although this
approach accounts for correlation among crash counts, the expected
crash consequences (for drivers and passengers) do not vary across
locations, and vehicle occupancy levels as an important determinant
of overall risk exposure are ignored. Note that vehicle occupancy has
been an important part of transportation management systems and is
used for evaluating high-occupancy-vehicle lanes or congestion
reduction strategies (14). However, vehicle occupancy levels as a
determinant of traffic risk exposure have often been ignored in the
implementation and evaluation of traffic safety strategies.

This paper introduces a new hierarchical Bayesian framework to
integrate accident frequency, severity, and vehicle occupancy levels
in the hot spot identification process. The primary intention is to illus-
trate the potential effect of incorporating accident severity on the
result of the hot spot identification process. For this purpose, a group
of highway–railway crossings from Canada is used as an application
environment.

TOTAL RISK–BASED APPROACH

In this section, the elements of the proposed Bayesian risk-based
methodology are defined, including severity score, accident 
consequence model, and hot spot identification criteria.

How to Incorporate Accident Severity and
Vehicle Occupancy into the Hot Spot
Identification Process?

Luis F. Miranda-Moreno, Liping Fu, Satish Ukkusuri, and Dominique Lord
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This paper introduces a Bayesian accident risk analysis framework that
integrates accident frequency and its expected consequences into the hot
spot identification process. The Bayesian framework allows the intro-
duction of uncertainty not only in the accident frequency and severity
model parameters but also in key variables such as vehicle occupancy
levels and severity weighting factors. For modeling and estimating the
severity levels of each individual involved in an accident, a Bayesian
multinomial model is proposed. For modeling accident frequency, hier-
archical Poisson models are used. How the framework can be imple-
mented to compute alternative relative and absolute measures of total
risk for hot spot identification is described. To illustrate the proposed
approach, a group of highway–railway crossings from Canada is used
as an application environment.

Because of the deficiencies of accident risk estimates based on raw
data, the traffic safety community is interested in the development
and application of the risk model–based approach, which makes use
of statistical methods based on probability theory. The approach con-
sists of a systematic analysis of the input crash data to develop acci-
dent frequency and consequence models from which ranking criteria
are built (1–3). Once statistical models have been developed from the
input data, several Bayesian ranking methods or criteria proposed in
the literature can be applied to identify a list of hot spots (1–8). These
criteria include the posterior expectation of accident frequency, the
potential of accident reduction, and the posterior expectation of ranks.
These measures usually are based on the assumption that the safety
status of a site can be reflected by accident frequency, and severity
is usually not incorporated in the analysis or is assumed to be fixed
over locations (observed and unobserved severity heterogeneities
are ignored across sites). In many applications, however, accident
frequency may not completely reveal the total risk level of a site
or capture the safety benefits that some safety countermeasures could
introduce. For example, in highway–railway networks, some safety

L. F. Miranda-Moreno, Department of Civil Engineering and Applied Mechanics,
McGill University, Macdonald Engineering Building, 817 Sherbrooke Street West,
Montreal, Quebec H3A 2K6, Canada. L. Fu, Department of Civil and Environmen-
tal Engineering, University of Waterloo, 200 University Avenue West, Waterloo,
Ontario N2L 3G1, Canada. S. Ukkusuri, Department of Civil and Environmental
Engineering, Rensselaer Polytechnic Institute, 4032 Jonsson Engineering Center,
Troy, NY 12180. D. Lord, Zachry Department of Civil Engineering, Texas A&M
University, 3136 TAMU, 317 Gilchrist Building, College Station, TX 77843-3136.
Corresponding author: L. F. Miranda-Moreno, luis.miranda-moreno@mcgill.ca.

Transportation Research Record: Journal of the Transportation Research Board,
No. 2102, Transportation Research Board of the National Academies, Washington,
D.C., 2009, pp. 53–60.
DOI: 10.3141/2102-07



Severity Score Definition

Total risk is commonly defined as the product of the accident fre-
quency and consequences [see, for example, Saccomanno et al. (10)].
That is,

where

TRi = total risk at site i (i = 1, . . . , n),
θi = mean number of accidents, and
Ci = expected consequence caused by an accident taking place

at site i.

Previous research has mainly focused on how to estimate accident
frequency; the work described here focuses on how to compute Ci.
Under a Bayes framework, both θi and Ci can be considered as ran-
dom variables. In addition, because an accident can result in differ-
ent types of outcomes, such as fatal, major, and minor injuries and
property damage, the total consequence should encapsulate at least
the major types of outcomes. As a result, Ci is defined as a severity
score integrating three components, as follows:

where f1i, f2i, and f3i are the expected number of fatal, serious, and
minor injuries, respectively, under an accident taking place at site i;
ω1, ω2, and ω3 are estimated equivalent monetary costs (or prespec-
ified weights) per fatality, serious injury, and minor injury, respec-
tively. Three examples of these equivalent costs are given in Table 1
(10, 15). Note that, in the proposed integration approach, other
costs, such as property damage, emergency services, and delays, are
ignored—they are usually small or proportional to other injury costs.

The expected number of casualties of a given severity type in
Equation 2 can be estimated by multiplying the expected number of
passengers per vehicle (estimated motor vehicle occupancy) by the
probability that a person involved in an accident suffers that type of
severity:

where pki is the probability that a passenger involved in a collision
at site i with specific site attributes suffers an injury of type k (k = 1,

f p hki ki i= × ( )3

C f f fi i i i= + +1 1 2 2 3 3 2i i iω ω ω ( )

TRi i iC= ×θ ( )1
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2, 3) and hi refers to an average number of passengers involved in
an accident. Since in some practical application hi may be difficult
to estimate, a common nominal value (h) could be assumed for dif-
ferent subgroups of sites. On the basis of past vehicle occupancy
studies or vehicle occupancies reported in accident records, an ana-
lyst should be able to define various occupancy weighting values for
various subgroups of sites. For example, heavy weights could be
assigned to locations with a high percentage of vehicles with high
levels of occupancy (14). This will allow vehicle occupancy level
to be considered as an important determinant of the overall crash
risk exposure in roadway facilities.

Collision Consequence Modeling

To estimate the total accident consequences with Equations 2 and 3,
the probability that a passenger involved in a collision will suffer
each given injury type (pki) must be estimated. To do this, a Bayesian
severity model setting is used, which assumes that the outcome of a
collision follows a multinomial distribution. In this model, informa-
tion about vehicle occupancy can be incorporated in which each per-
son involved in a collision suffers one of four possible severity types:
fatality, severe injury, minor injury, or no injury. Alternatively, an
ordinal Bayesian model could be formulated for the injury outcomes;
however, a comparative analysis is beyond the scope of this paper.
In addition, a random effect at the site level could be introduced in
the model to account for intrasite correlation, since accidents com-
ing from the same site can be nested. However, only the basic model
formulation is shown for illustrative purposes.

To model the severity of an accident, it is assumed that an accident
can lead to K possible injury outcomes, denoted by r = {r1, . . . , rk},
where k indicates the type of injury, k = 1, . . . , K. Suppose that there
are h persons involved in an accident and that each person could
suffer from a specific injury outcome k with probability pk. Then,
by assuming that r follows a multinomial distribution, an accident
outcome can be modeled as

where h is the number of persons involved in an accident (note that
r1, . . . , rK are nonnegative integers) and p is the vector of probabil-
ities [p = (p1, . . . , pK), pk being the probability that a person involved
in an accident has an injury of type k (pk > 0)].

Then the probability that an involved person will have a type k
injury can be estimated by using the following logit regression:

where ϕik is a measure representing the propensity for a person
involved in an accident with specific traits i to experience severity
type k. Here, ϕik is expressed as a linear function of site characteristics,
environment, and individual attributes:

where zi = (z1i, . . . , zmi) represents site, vehicle, or other character-
istic (e.g., speed limits, location characteristics where accident took
place, vehicle type) and �k = (γ0k, . . . , γmk) is a vector of regression
parameters. In the model, a Gaussian noninformative prior is

ϕ γ γ γik k k i mk miz z= + + +0 1 1 6� ( )
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ik

ik
k

K
= =( ) =

( )
( )

=
∑

Pr
exp

exp

a passenger
ϕ

ϕ
1

(( )5

r p p~ , ( )multinomial h( ) 4

TABLE 1 Direct Severity Costs per Person and Weights 
Assumed in Analysis

Cost Estimates (U.S. $)

Serious Minor
Source Fatality Injury Injury ω1 ω2 ω3

1 2,710,000b 65,590 30,000 41 1.0 0.5

2 2,000,000c 65,590 30,000 30 1.0 0.5

3 1,000,000d 65,590 30,000 15 1.0 0.5

aThe weights are relative to the serious injury cost. The serious and minor injury
costs are the same as the ones proposed by Saccomanno et al. (10). The weights
are obtained by dividing each cost by the serious injury cost.
bCost employed by Saccomanno et al. (10).
cCost reported by Zaloshnja et al. (15).
dCost designated for U.S. agencies (e.g., National Safety Council, www.nsc.org/
resources/issues/estcost.aspx).

Weightsa



assumed on these parameters. Once the proposed model is calibrated
with empirical data, Equation 3 [i.e., fki = E(rk) = pki × hi] can be used
to estimate, for example, the expected number of fatalities, serious
and minor injuries, and noninjuries.

After computation of the expected number of casualties by type,
the total severity score Ci can be estimated according to Equation 2,
where the f-values vary across locations, depending on attributes
such as posted road speeds, maximum train speeds, and levels of
occupancy. Furthermore, ω1, ω2, and ω3 are usually provided by insur-
ance or governmental agencies. In the approach used here, these
weights can be assumed to be fixed or to follow a known prior distri-
bution with parameters fixed according to different cost estimates
such as those reported in Table 1. Other components may be included
in the cost per accident, such as costs for property damage, delays,
and emergency services. Even so, there is often not enough informa-
tion to incorporate these extra costs. In addition, the extra costs are
usually smaller than the cost of fatalities and injuries.

This modeling setting is based on the idea that there are different
collision configurations across sites. Thus, there are variations in the
injury type probabilities that can be explained by site-specific fac-
tors such as roadway features (posted road speed, urban or rural site,
surface width, etc.) as well as environmental conditions and pas-
senger and vehicle characteristics. Obviously, the set of factors that
can be included depends on data availability. Moreover, many un-
observable factors affect injury levels (two passengers with the same
observable characteristics who have a collision do not necessarily
have the same injury level).

Ranking Criteria Based on Absolute 
and Relative Total Risk

Once the severity score is determined, a hot spot strategy based on
the posterior distribution of the total risk (TRi) can be specified as
follows:

where cT is a standard value established by decision makers and δ0 is
a threshold value or confidence level varying between 0 and 1. For the
definition of δ0, the Bayesian testing methods introduced in previous
work (16) are used.

υ δi i TcTR TR data= >( ) ≥Pr ( )0 7
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The decision as to whether a site should be considered a hot spot
could also be made on the basis of its relative rank as compared with
other sites under a given safety measure. The rank of a site i under
the total risk (TRi) is defined as follows:

where I(condition) is an indicator function with the value 1 if the con-
dition is met and 0 otherwise. The index TR in r stands for the rela-
tive comparison under total risk. Given that the safety measure TRi is
a random variable, the resulting rank r(TR)i

is also a random variable
with its posterior distribution depending on the relative compari-
son of TRi with respect to the others. Hot spots can then be identi-
fied on the basis of the ranks of the sites by computing the following
posterior probability:

where q is a standard or upper limit rank specified by the decision
makers. For instance, q can be defined as a certain proportion of n,
that is, q = τ × n, where τ is a percentage (e.g., 70%, 80%). This hot
spot selection strategy can be used when the focus is on the identi-
fication of sites with ranks greater than a certain percentile value.
Once υi is computed under Equation 9, the optimal cutoff value δ1

can be determined by using any of the multiple testing procedures
introduced by Miranda-Moreno et al. (16). Note also that other rank-
ing criteria can be formulated according to any of the safety measures
previously defined.

CASE STUDY

To illustrate the proposed approach, a sample of highway–railway
intersections in Canada is considered as an application environ-
ment. For this case study, a group of public crossings with automatic
gates as the main warning device is considered; they comprise 1,773
crossings. Automatic gates provide an additional control level and
are usually found in conjunction with flashing lights. The gate arms
are usually reflectorized and fully cover the approaching roadway
to prevent motor vehicles from circumventing the gates, which are
coordinated with the flashing lights (Figure 1). All crossings use
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FIGURE 1 Standard level crossing with gates.



two-quadrant gates with dual gate arms, which block motor vehicles
in each direction. Once a crossing of this type is identified as a hot
spot, it can be further upgraded with new countermeasures such as
four-quadrant gates; median separation, which can prevent vehicles
from driving around lowered gates; or grade separation.

The main characteristics of this data set are summarized in Table 2.
The table indicates that the data set is characterized by a high pro-
portion of zero accidents (and low mean), which is a common char-
acteristic in accident data. Before model calibration, an exploratory
data analysis was carried out to identify high linear correlation
among covariates and to detect observations with extreme values or
missing information. The correlation among crossing attributes was
moderate, and surface width is not included in the analysis because
this information is missing for many crossings.

Frequency Model Calibration

For illustration purposes, two hierarchical Bayes models are dis-
cussed: the Poisson–gamma model with a multiplicative error term—
exp(�i) ∼ gamma(φ, φ)—and the Poisson–lognormal model with an
additive error, �i ∼ normal(0, σ2). As described by Lord and Miranda-
Moreno (17 ), the parameters a and b of the hyperprior distribution
assumed on φ or σ−2 [φ ∼ gamma(a, b) and σ−2 ∼ gamma(a, b)] might
be first specified. For the hierarchical Poisson–gamma model, non-
informative priors with small values for these parameters could be
assumed (e.g., a = b = 0.01 or a = b = 0.001). However, in this study,
a more reasonable approach is followed: advantage is taken of the
dispersion parameter estimate (φ̂) obtained by maximizing the neg-
ative binomial (NB) marginal likelihood (16). For example, for this
data set, the NB model was calibrated first, which yielded a disper-
sion parameter of φ̂ = 0.64. On the basis of the fact that the expecta-
tion of the gamma distribution assumed for φ is a/b and by fixing
a = 1, it can be assumed that E(φ⎟ b) = 1/b = 0.64, from which b = 1.56.
In this case study, vague hyperpriors are assumed for σ−2 with both
parameters a = b = 0.01 or a = b = 0.001 for the hierarchical Poisson–
lognormal model.

Once the hyperparameters are fixed, posterior distributions are
sampled by using the statistical software WinBUGS. In this study,
6,000 simulation iterations were carried out for each parameter of
interest, with the first 2,000 samples used as burn-in iterations. To
select the crossing attributes to be included in the final model, the
posterior expected values of all the regression coefficients were
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obtained first, along with their standard deviations and 95% con-
fidence intervals. From those, only the attributes whose regres-
sion coefficients did not contain 0 in the 95% confidence intervals
(i.e., regression parameters significantly different from 0 at the
95% confidence level) were selected. The crossing attributes are
as follows:

1. Road type, represented as a binary variable (road type = 1 for
arterials or collectors, 0 otherwise);

2. Posted road speed (km/h); and
3. Traffic exposure (Ei), computed as a function of daily road

vehicle traffic (AADTi) and number of daily trains (ti) (i.e., Ei =
AADTi × ti).

The posterior summary of the covariate coefficients (β) along with
the dispersion parameters φ and σ2 were computed for the Poisson–
gamma and Poisson–lognormal models, respectively. The results are
presented in Table 3. The posterior mean of the regression coeffi-
cients is positive, except β0, which makes sense from a safety point
of view and confirms the results obtained in previous work (7, 18).
In addition, the deviance information criterion (DIC) results pre-
sented in the same table indicate that a better fit to the data was
obtained by applying the Poisson–gamma model. As expected, the
DIC value computed with the Poisson–gamma model with semi-
informative prior is smaller than the one obtained with the Poisson–
lognormal model with vague hyperprior on the dispersion parameter.
As stated earlier, a sensitivity analysis on alternative prior specifica-
tions is always recommended to identify the best alternative model.
Given the large sample (n = 1,773) used in this exercise, the model
outcome is not very sensitive to the prior assumptions. On the basis
of the results of this analysis, it was decided to use Poisson–gamma
in the subsequent analysis.

Severity Model Calibration

To calibrate the parameters of the proposed severity model, the
collision database for the period 1997–2004 was utilized. A total
of 941 highway–railway grade crossing collisions were included
(see Table 4). Alternative specifications were attempted for the
function ϕik, from which it was found that maximum train speed and
posted road speed are the main salient factors significantly influencing
collision severity at a crossing—that is, ϕik = γ0k + γ1k � z1i + γ2k � z2i,

TABLE 2 Variables and Statistics for Crossing Data Set with Gates

Variable Unit Average/% St. Dev. Max Min

Road class Arterial/collector = 1, 0 others 44.0%

Track number Number 1.9 0.9 8.0 1.0

Track angle Degree 72.5 18.4 120.0 0.0

Train maximum speed mph 56.4 24.3 100.0 5.0

Road posted speed km/h 59.3 16.1 100.0 15.0

Number of daily trains (F1) Trains/day 22.3 22.8 338.0 1.0

AADT (F2) Vehicles/day 4,162.7 6,041.7 48,000.0 10.0

Traffic exposure Ln(F1 × F2) 10.1 1.7 15.9 3.9

Whistle prohibition If prohibited = 1, 0 otherwise 35.2%

Surface width ft 11.4 7.2 75.0 0.0

Number of collisions Number (5-year period, 1997–2001) 0.12 0.4 4.0 0.0



where z1i and z2i are maximum train and road posted speeds,
respectively. The calibration results are shown in Table 5, where
the parameters for Severity Type 1 (fatality) are not shown, since
Severity Type 1 is set as the base type with parameters equal to 0.
The selection of this model was supported by the DIC. Figure 2
shows how p1i varies as a function of maximum train and posted road
speeds. The figure shows that the outcomes of a highway–railway
crossing collision are sensitive to maximum train speeds.

Hot Spot Identification Using Total Risk

On the basis of the same group of highway–railway crossings with
gates as a main warning device (n = 1,773 intersections) and the
hierarchical Poisson–gamma model defined above, the υ-values
were computed for the hot spot identification. To do so, a Bayesian
approach was implemented by using a Markov chain Monte Carlo
(MCMC) framework. One of the advantages of this framework is
that different sources of information and uncertainty can be incor-
porated into the analysis. The multiple sources of information
(parameters) in this decision process are illustrated in Figure 3. In
the framework used here, not only are the model parameters (β, φ, θi)
assumed random but also the uncertainty with Ci can be introduced by
defining prior distributions in different model parameters, including
ω, hi, and γ.

In this demonstrative example, a value of cT = 1 is defined accord-
ing to the weights defined in Table 1, which is equivalent to the cost
of a serious injury. In addition, an average level of occupancy (Oi)
equal to 1.29 (which corresponds to the average vehicle occupancy
of the recorded collisions involved in this analysis) is used. Once the
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various model parameters are fixed, MCMC algorithms can be used
for the computation of υ-values.

Finally, a Bayesian testing approach is used for the definition of
δ0 (16). Fixing cT = 1 and controlling the false-discovery rate at 10%
(αD = 10%) result in the optimal thresholds and hot spot list sizes
presented in Table 6. Use of a Bayesian test with weights for κ0 = 3
and κ1 = 1 results in threshold values and hot spot list sizes given in
the same table. The codes for computing the model parameters and
υ-values are provided by Miranda-Moreno (18). For estimating the
parameters of the Bayesian Poisson and multinomial logit models
and the posterior υ-values, the software package WinBUGS was
used. Written codes are provided by Miranda-Moreno (18).

As Table 6 and Figure 4 indicate, the hot spot list size is sensi-
tive to the weight assigned to the fatalities (ω1). For example, for a
given value of cT and a specific control level (αD), the hot spot list
size increases in a nonlinear way as ω1 increases. The designation
of a weight (or monetary value) for a human life may be controver-
sial. However, in the hot spot identification activity, this helps tar-
get locations where not only the accident frequency but also the
consequences will be high. In the case of highway–railway cross-
ings, intersections with high maximum train and posted road speeds
will be pushed up in the ranking, since the accident severity at these
sites will be higher.

Practical Application of the 
Proposed Methodology

For practitioners, the implementation of the modeling framework
introduced above may not be straightforward. It demands advanced
statistical and computational knowledge, which could significantly
hinder its application in addressing practical problems. Therefore, a
web-based decision support tool called GradeX has been developed
(details are available at www.gradex.ca/). The tool makes some state-
of-the-art risk-based methodologies for hot spot identification, such
as the one introduced in this paper, accessible to practitioners.
GradeX is used by Transport Canada and all of its regional offices
to identify grade crossing hot spots and analyze alternative counter-
measures for safety improvements. It integrates a rich set of acci-
dent prediction models and risk assessment methodologies, including
the multinomial logit model presented in this paper. GradeX also
offers state-of-the-art methodologies for countermeasure effective-
ness analysis. It provides users with a convenient interface to define

TABLE 4 Summary of Collisions by Severity

Average
Variable Total (no./collisions) Max Min

No. of accidents 941 — — —

No. of occupants 1,217 1.29 21 1.0
(persons involved)

Fatalities 137 0.15 3.0 0.0

Serious injuries 189 0.20 3.0 0.0

Minor injuries 241 0.26 7.0 0.0

TABLE 3 Posterior Estimates of Model Parameters

Posterior Markov Chain Conf. Interval
Hierarchical Model Attributes Mean Std. Dev. Error (2.50%–97.50%)

Poisson–gamma Intercept β0 −6.429 0.717 0.076 (−7.764, −4.955)
a = 1.56 Road type β1 0.499 0.164 0.007 (0.171, 0.815)

Posted road speed β2 0.011 0.005 0.000 (0.001, 0.021)
Traffic exposure β3 0.323 0.054 0.005 (0.214, 0.429)
φ 0.691 0.237 0.025 (0.381, 1.332)

DIC = 1,191.25

Poisson–lognormal Intercept β0 −7.041 0.72 0.08 (−8.316, −5.657)
a = 0.001 Road type β1 0.506 0.17 0.01 (0.167, 0.842)
b = 0.001 Posted road speed β2 0.011 0.01 0.00 (0.001, 0.022)

Traffic exposure β3 0.327 0.05 0.00 (0.228, 0.421)
σ 1.016 0.14 0.01 (0.706, 1.296)

DIC = 1,220.40



a set of crossings to be investigated, which facilitates analysis of
crossings located within any geographical area, such as region,
municipality, and corridor [details are given by Fu et al. (19)].

CONCLUSIONS AND FUTURE WORK

One of the common approaches to hot spot identification is first
to rank candidate sites on the basis of a safety measure and then
to select the top sites according to a critical value. However, little
research has been conducted in literature on how to incorporate
heterogeneities across locations in the severity and occupancy lev-
els at the hot spot identification stage. In this paper, a systematic full
Bayesian framework for estimating the total risk of a given site as
the product of accident frequency and its expected consequences
was proposed. The Bayesian framework allows the introduction of
severity uncertainty, not only in the model parameters but also in
key factors such as vehicle occupancy levels and severity weight-
ing factors. The proposed framework also allows identification of
hot spots under relative or absolute measures of total risk, with an
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TABLE 5 Calibration Results of Consequence Models

Posterior Markov Chain Conf. Interval
Severity Type Variable Coefficient Mean Std. Dev. Error (2.50%–97.50%)

Fatal (Base type) γ01 = γ11 = γ21 = 0

Major injury Intercept γ02 1.462 0.305 0.025 (0.833, 2.026)
Train speed γ12 −0.021 0.005 0.000 (−0.030, −0.010)

Minor injury Intercept γ03 2.072 0.306 0.026 (1.412, 2.698)
Train speed γ13 −0.028 0.005 0.000 (−0.038, −0.018)

No injury Intercept γ04 4.459 0.319 0.028 (3.832, 5.134)
Train speed γ14 −0.042 0.004 0.000 (−0.051, −0.033)
Road speed γ24 −0.014 0.003 0.000 (−0.020, −0.008)
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approximately determined for various subgroups of locations on
the basis of vehicle occupancies reported in accident data. The
premise is that, with the proposed model, locations with a higher
average vehicle occupancy would have a better chance of being
included in the hot spot list.

As part of the research effort, a safety measure that estimates
the “anticipated” cost–benefit ratio is being developed. Since a hot
spot selection strategy aims to direct safety improvement efforts
toward sites where maximum cost-effectiveness can be achieved,
it would be of great value if the process could take into account
both the costs and the safety benefits of remedy projects that could
be introduced at the sites under consideration (4). Hierarchical
ordered models are to be developed and integrated into the risk-
based framework. The comparative performance of relative versus
absolute measures of risk will be part of future research. It is also
necessary to explore the use of new technologies to improve exist-
ing methods for occupancy data collection. The evolution of vehi-
cle occupancy and its implications for road safety also deserve
further investigation.
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TABLE 6 Threshold Values and Hot Spot List Size Under Total Risk

Bayesian Test with Weights
FDR Test (αD = 10%) (κ0 = 3 and κ1 = 1)

Severity Weights Threshold (δ0) No. of Hot Spots Threshold (δ0) No. of Hot Spots
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NOTE: FDR = false-discovery rate.

appropriate control on global error rates, such as a false positive
error rate.

The applicability of the framework is illustrated by using an acci-
dent data set from Canadian highway–railway crossings with auto-
matic gates. To estimate total accident consequences, the probability
that a passenger involved in a collision is fatally or seriously injured
is estimated by using a Bayesian multinomial model. In this model,
information with regard to vehicle occupancy can be incorporated
in which each person involved in a collision has several possible
severity outcomes, such as fatality, severe or minor injury, and no
injury. In addition, hierarchical Poisson models with additive and
multiplicative model errors are used to model accident frequency.
For this particular case, the Poisson–gamma model fits the observed
data better than does the Poisson–lognormal. Finally, multiple
Bayesian tests are implemented to control the proportion of false
positives in the hot spot list.

Considering the number of persons involved in an accident in
concert with the number of crashes is expected to improve the effec-
tiveness of allocating resources to various safety programs. It is
recognized that the inclusion of vehicle occupancy in road safety
analysis may represent some challenges in practical applications—
obtaining occupancy data for each location involved in the analy-
sis can be an expensive and time-consuming task. However, in
safety studies in which detailed occupancy information is not avail-
able, sites can be classified according to the proportion of high-
occupancy vehicles, such as transit and school buses. Alternatively,
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